If it's not what You are looking for type in the equation solver your own equation and let us solve it.
900=b^2
We move all terms to the left:
900-(b^2)=0
We add all the numbers together, and all the variables
-1b^2+900=0
a = -1; b = 0; c = +900;
Δ = b2-4ac
Δ = 02-4·(-1)·900
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*-1}=\frac{-60}{-2} =+30 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*-1}=\frac{60}{-2} =-30 $
| 33=2x^2 | | 9(y^2+4y+36)=0 | | 2x-21=-3 | | 2x+63=3x+24 | | 4.a=36 | | 6.y=42 | | (25x-13)-(360-(25x-13))=2(8x-6) | | 3x-4/6-1/3=1/2x | | (25x-13)-(360-(25x-13))=8x-6 | | (25x-13)-((360)-(25x-13))=8x-6 | | 2x^2+0.2x-0.01=0 | | (360)-(25x-13)=98 | | (360-25x-13)=98 | | (25x-13)-(98)=164 | | (25x-13)-(360-25x-13)=164 | | 15=9y-2y-6 | | (25x-13)-(360-25x-13)=2(8x-6) | | (25x-13)-(360-25x-13)=2(6x-6) | | 3/4x3+2=11 | | x*0.7=12932 | | (25x-13)-(10x-5)=5 | | 12x7=6x | | 18x^2-6400x+430200=0 | | 18x^2-6400+430200=0 | | 66+-1x2+x=10 | | X/5-x/2=-27 | | x*2x=2500 | | 9x-14=7x-14 | | /3−2xx+1=123−2xx+1=12 | | 5x+3=10x–7 | | 700x+1000(1-x)=738 | | 700*x+1000*(1-x)=738 |